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1. Introduction

The conservation laws of isothermal, isentropic or adiabatic

thermoelasticity, in all their standard variants (Lagrangean or

Euclidean formulation, solids or fluids, one or several space

dimensions, etc.), lead to systems of quasilinear hyperbolic equations.

A feature of such systems is that the Cauchy problem does not have globa

smooth solutions, even when the initial data are very smooth, due to

the formation of shock waves. However, global solutions exist in

the class of functions of bounded variation,/in the sense of Tonelli-
/

Cesari [8].

When the material is viscous and/or heat may diffuse, dissipative

mechanisms emerge in the-system of conservation laws, which manifest

themselves through the appearanceof "parabolic" terms or "memory"

terms. The same phenomenon also arises in the context of the theory

of ehemically reacting media with dissipation induced by diffusion.

A dissipative mechanism may affect, in general, the asymptotic

behavior as well as the smoothness of solutions. Ranked according to

effectiveness, dissipative mechanisms may be classifed into (-rl those

which are so powerful as to smoothen out even rough initial data, always

yielding smooth solutions; P>-Y-those that preserve the smoothness of

smooth initial data but are incapable of smoothening rough initial

I $ data; (C) those that preserve the smoothness of smooth and "small".'

initial data but cannot prevent the breaking of smooth waves of

large amplitude; (d) those that are not capable to prevent even the

breaking of smooth waves of small amplitude. _

From the viewpoint of analysis as well as continuum physics

it would be useful to classify the conservation laws for the
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standard material classes into one of the above categories. Although

a number of scattered results in this direction are already available,

there are still many unanswered questions and, more importantly, there

has been no attempt to place the existing information into a general

framework.

In this lecture, I shall outline a research program towards

understanding the role of dissipation and estimating its effectiveness.

I will exhibit a (far from exhaustive) list of representative examples

and I will discuss what has been established and what has been con-

jectured, for each case.

2. Complete Parabolic Damping

The simplest example of an equation with complete parabolic

damping is provided by

(2.1) ut + f(u) x = Uxx,

(f(u) nonlinear and smooth) whose behavior is to be contrasted to

that of the hyperbolic conservation law

(2.2) ut + f(u)x -0

The Cauchy problem for (2.2), with initial data u(x,O), of bounded

variation, admits a solution in the class BV of functions of

bounded variation,.in the sense of Tonelli-Cesari. No gain would be

made by assuming that u(x,O) is smoother, even analytic! In

contrast, the initial-value problem for (2.1) with rough, just

f .
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bounded measurable, initial data always has a smooth solution.

This type of behavior is,of course, due to the power of parabolic

damping and characterizes a broad class of systems of equations in

the form

.(2.3) w t + f(w) x -Awx x

where A is a positive definite matrix and f satisfies certain

technical smoothness and growth assumptions.

3. Incomplete Parabolic Damping

In this section we will discuss the representative systems

Ut -v x = 0
(3.1) v (~ x

3.2+ p(u)x =

5 I

t  x  I I

(3.2) 1 + p(U,O) x v ~( [euO (vJ x

(33 vt + p(uo) x - 0

v2

[e(u,6) + V] t + [p(u,O)v]x = e

(3.1) are the equations of motion of one-dimensional viscoelastic

jt
.. . .. . " - i .. . . .. ... . . .. " . .... .... ... . . "-< ll :" 2
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materials of the rate type, while (3.2) and (3.3) express the con-

servation laws of momentum and energy of one-dimensional thermo-

viscoelastic and thermoelastic materials, respectively.

The physically natural assumptions are

(3.4) Pu(uO) < 0, ee(u,O) > 0, eu (u,) = 92[pu UG)].

(3.1) should be contrasted to the system of equations of motion

of one-dimensional elastic materials,

ut - x -0

(3.5)
v t + p(u) x =f 0,

while (3.2) and (3.3) should be contrasted to the conservation laws

for adiabatic processes in one-dimensional thermoelasticity:

ut - v= 0

(3.6) v + p(u,O) x = 0

v2

L [e(u,e) + t + [P(UO)Vx = 0.

(3.5) and (3.6) are typical examples of systems of hyperbolic

conservation laws.

System (3.1) can be written in the form (1.3) where, however,

A is only positive semidefinite (whence the term "incomplete

parabolic damping"). Intensive investigation for System (3.1)

(e.g. [1,3,9,10]) has generated a chain of existence theorems
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revealing several function classes whose smoothness is preserved

by solutions. Typical examples of such classes are 17 x L2

(cf. [1]) and C2  x C (cf. [3]). However, an important link

is missing from the chain. Indeed, since the Cauchy problem for

(3.5), with initial data of small total variation, has global

solutions of class BV, it is natural to expect the same from (3.1).

This conjecture, however, has not yet been verified. The difficulty

lies in that the existence theory for (3.5) has been established by

means of Glimm's scheme [8] which hinges on the explicit construction

of solutions to the Riemann problem for systems of hyperbolic con-

servation laws. Numerical analysts [2] have applied Glimm type

methods (in combination with fractional steps or by modifying the

Riemann problem) to systems containing "parabolic" terms with

excellent results. Nevertheless, the theoretical justification of

this approach is still lacking.

Solutions of (3.1) of class BV have different geometric

structure than corresponding solutions of (3.5). For functions

(uv) of class BV, first derivatives ut,ux,vt,vx are locally

finite Borel measures. When such a pair of functions is a solution

to (3.5), the set of points of jump discontinuity is (cf. [7]) the

countable union of Cl curves (shocks) with slope

(3.7) s - ±(- -u) M-11 2

The jumps of u and v across shocks are controlled by the Rankine-

Hugoniot conditions
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s[u] + IV) 0
(3.8)

S[v] - [p(u)] 1 0.

On the other hand, if (u,v) E BV is a solution to (3.1), it

follows from (3.1)2 that vxx is also a locally finite Borel

measure. Thus, v cannot sustain any jump discontinuity and, as

seen from (3.1)1, u may only be discontinuous along stationary

lines, s = 0. Through explicit construction of particular solutions

of (3.1) one shows that such singularities may indeed occur. Con-

sequently, in contrast to the complete parabolic damping of

Section 2, viscous damping is incapable of smoothening rough initial

data.

My conjecture is that System (3.2) exhibits exactly the same

behavior as (3.1). A research program towards verifying this con-

jecture is in progress.

In System (3.3) damping is weaker than in (3.1) or (3.2).

Slemrod [14] has shown that global smooth solutions exist

provided that the initial data are both smooth and "small". My

conjecture is that smooth waves of large amplitude break. Since

the Cauchy problem for (3.6) has a global solution of class BV when

the initial data have small total variation [11], it is natural

to expect similar behavior from (3.3). However, this conjecture has

not been established yet.

Jump discontinuities of BV solutions of (3.6) occur across

forward or backward shocks, propagating with speeds

bIj
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(3~ ~ 9)s- { p(uO)]}1/2

(39) s =±{.

or across contact discontinuities which are stationary, s = 0,

and across which u and 0 may jump but v and p are continuous.

-On the other hand, if (u,v,O) E BV is a solution of (3.3), 0XX

is also a locally finite Borel measure. It follows that 0 cannot

sustain jump discontinuities. Forward and backward shocks,

propagating at speeds shown in (3.9), are still possible. Contact

discontinuities, however, are ruled out since u alone cannot jump

when all v,0 , and p(u,0) are continuous.

4. Viscous Damping Induced by Memory Effects

In this section, we discuss dissipation mechanisms induced by

viscosity in simple materials with fading memory (e.g. [16]). As

representative examples consider

u Ut V- = 0

(4.1) fv : ou) - a(t-1)(u)dT 0

t t )x

ut Vx + P e-(t d = 0

(4.2)

v t -C (u) " a(t-T)O(u) d = 0.

System (4.1) is a model of the equation of motion of non-linear, one

Idimensional viscoelastic materials of the Boltzmann type while (4.2)

#0~
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is the equation of motion of another model material (v is velocity in

both (4.1) and(4.2) while u is a strain in (4.1) and an internal

variable, functionof the history of velocity gradient, in (4.2). The

functions a and * are smooth and strictly increasing and the

kernel a(t) is a relaxation function.

Let us generally consider systems

(4.3) + ft + ft A(t-T)g(w) d, = 0

where f and are smooth maps from Rn to Rn and A(t) is

a smooth n x n matrix-valued relaxation kernel. We shall be look-

ing for solutions near w = 0 and we will be assuming that Vf(0)

has n real distinct eigenvalues (strict hyperbolicity), none of

them zero, in order to exclude the possibility of stationary waves that

would overburden the memory term.

In systems of the above form, dissipation may be induced

by the memory term. In order to expose the instantaneous

component of damping, we define a new relaxation function

(4.4) B(t) =At)vg(0)[VfCQ)] - I

and write

(4.S) A(.t)g(w) - B(t)f(w) + A(t)h(w)

where

EM&M a



t,9

(4.6) () = g(O.)- V-(1)[Vfo)-l ).

Then (4.3) takes the form

(4.7) wt + f(t)x + B(t-t)f(w)xdr = - A ~t-T)hCW)dT.

Next, we consider the resolvent kernel K(t) of B(t), i.e., the

solution to the linear Volterra equation

it

(4.8) K(t) + B(t-i)K(T)dT = -B(t).

Forming the convolution of (4.7) with K(t) and after a simple

computation we arrive at

(4.9) t + f(w) + K(0)w
Px

- K'(t-)wdT + fE(t-T)h(w)xdl

where

It

(4.10) E(t) = A(t) + K(t-T)A(T)dT.

Equation (4.9) is more convenient than the original form, (4.3).

In the first place, if B(O) is negative definite, then the term

K(0)w on the left-hand side of (4.9) induces instantaneous damping.

Furthermore, the integral terms on the right-hand side of (4.9) are

tame, the first one because it is linear in w and does not involve
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any derivatives and the second because it is "small", by virtue of

Vh(Q) - Q.

The damping in (4.9) is quite weak. Even so, in several

special cases, including (4.1) with an appropriate relaxation

kernel, it has been shown [4,5,12,13,15] that there exists a global

.smooth solution to the Cauchy problem provided that the initial data

are both smooth and "small". On the other hand, when the initial

data have small total variation, L. Hsiao and the author [6] have

established, by means of a modification of the method of Glimm,

the existence of a global solution of class BV. The strategy in

[6] is to show that damping counterbalances the effect of the

integral terms on the right-hand side of (4.9).

Clearly, a lot of work is still needed in order to complete

the program of classification of conservation laws with dissipation.

Ila
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